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Figure 1. OpenCity3D enables zero-shot urban 3D scene understanding including higher-level understanding such as crime rate, population
density, housing prices or local landmarks. For each text prompt, we visualize the response heat map from higher (yellow) to lower (blue).

Abstract

The rise of 2D vision-language models (VLMs) has en-
abled new possibilities for language-driven 3D scene un-
derstanding tasks. Existing works focus on indoor scenes,
or autonomous driving scenarios and typically validate
against a pre-defined set of semantic object classes. In this
work, we analyze the capabilities of vision-language models
for large-scale urban 3D scene understanding, and propose
new applications of VLMs that directly operate on aerial 3D
reconstructions of cities. In particular, we address higher-
level 3D scene understanding tasks such as population den-
sity, building age, property prices, crime rate, and noise
pollution. Our analysis reveals surprising zero-shot and
few-shot performance of VLMs in urban environments.

1. Introduction

Recent developments in 3D scene representation, in-
cluding Vision-Language Models (VLM) like CLIP [22]
and SIGLIP [29], Neural Radiance Fields (NERF) [15],
and Gaussian Splatting (GS) [12], have significantly ad-
vanced open-set inference capabilities. Impressive results
are obtained with methods such as OpenScene [18], Open-
Mask3D [27], LangSplat [21], and LERF [13]. These meth-
ods have predominately been evaluated in indoor spaces or
autonomous driving scenarios. In this work, we analyze,
for the first time, their applicability to large-scale urban 3D
scenes at city scale.

The city scale introduces unique challenges due to its
scale and diverse nature, that render existing methods less
effective. Many dense reconstruction techniques are too ex-
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pensive to run on such a scale. Understanding urban vari-
ables – ranging from the age of buildings to population den-
sity and crime rates – is crucial for urban planning and de-
velopment. Despite their cost, these methods have potential
to offer valuable insights into urban scene understanding,
providing a foundation for improving urban living condi-
tions and sustainability.

In this study, we extend these methodologies to oper-
ate effectively at the city scale. We introduce OpenCity as
our approach that involves utilizing mesh data and generat-
ing a language-features enriched point cloud using rendered
RGB-D images, inspired by the feature extraction proce-
dures of LangSplat [21]. By leveraging language encoders,
we query this language-features enriched point cloud to an-
alyze the information content of features related to tangi-
ble urban objects such as buildings and multifaceted urban
properties like population density and crime rates.

Our findings indicate promising results concerning the
understanding of urban inventory, particularly for identify-
ing building ages, housing prices, and population density.
While initial findings for crime rate and noise emission pre-
diction are less robust, our methodology demonstrates the
potential for comprehensive urban analysis and planning.

This work details our methodology, findings, and im-
plications for advancing 3D scene understanding on a city
scale, offering insights into leveraging advanced computa-
tional methods for urban research and development.

2. Related Work
Large-scale 3D Reconstructions. Traditionally, large
scenes are expressed as point clouds or meshes [1].
Whereas recent implicit methods demonstrate strong de-
noising and compression performance [26, 28], they often
require time-consuming optimization. Our method there-
fore relies on traditional explicit reconstructions.

Language-augmented 3D Scenes. Several recent stud-
ies have explored advanced techniques in 3D scene under-
standing and instance segmentation. Peng et al. [18] in-
troduced a method that assigns per-point features to point
clouds, followed by a multi-view feature fusion using
CLIP [22] features. Their approach, OpenScene, supports
open-vocabulary queries but faces challenges in achieving
sharp segmentation masks.

OpenMask3D [27] is designed specifically for open-
vocabulary 3D instance segmentation. It leverages CLIP
embeddings to extend Mask3D [24], a model for 3D seman-
tic instance segmentation, on an open vocabulary. To do so,
it uses SAM [14] masks from posed RGB-D images of the
scene to obtain CLIP embeddings that are then assigned to
Mask3D masks in 3D space, embeddings that can be then
compared to the ones from open vocabulary queries. A sig-
nificant strength of OpenMask3D is the fact that it reasons

at the mask level (instead of point-wise) which significantly
improves efficiency and storage usage, both important fac-
tors for scalability. This would make it a perfectly suited
candidate for large urban scene representations. However, it
relies on the Mask3D segmentation model, which is trained
on indoor scenes, and thus does not generalize to large
city scenes. Alternative segmentation models such as Seg-
ment3D [9] did not remedy the situation, which is likely due
to the indoor training data of both methods.

Kerr et al. [13] propose LERF, Language Embedded Ra-
diance Fields, which builds on NeRF [15]. LERF inte-
grates language features by learning a language field from
2D CLIP features analogously to how NeRFs learn color
fields. This representation enables querying and rendering
arbitrary user queries.

LangSplat [21], on the other hand, combines 3D Gaus-
sian Splatting with language features extracted using Seg-
ment Anything Model (SAM) [14] techniques. This hy-
brid approach hierarchically crops parts of images and feeds
them into CLIP, compressing resulting VLM features with
an auto-encoder. The efficacy of LangSplat lies in its op-
timization of language features through rendered compar-
isons with CLIP features. Scaling Gaussian Splatting to
large urban scenes is still an active field of research. Ad-
ditionally, LangSplat relies on VLM feature compression
due to memory constraints, which can lead to reduced open-
vocabulary capabilities. In this work, we do not require such
constraints. [26]

In our approach, we adapt LangSplat’s hierarchical fea-
ture extraction with OpenScene’s point cloud-based scene
representation. Using a sparse point cloud instead of Gaus-
sian Splatting enables us to analyze the full, uncompressed
VLM features at the cost of less accurate geometry which
is less relevant for higher-level urban queries as described
below. We furthermore experiment with SigLIP [29] as a
replacement for CLIP as a VLM backbone. SigLIP is a
modification of CLIP, utilizing a Sigmoid loss instead of
a softmax for pairwise language-image pre-training.

3. Method

3.1. City Scene Pre-processing

An illustration of the pipeline is shown in Fig. 2. The
goal is to produce a point cloud with VLM features for
each vertex. Input is a 3D mesh obtained from geospatial
data [1]. To that end, we first render RGB color and depth
images of the 3D city mesh from multiple viewpoints, rang-
ing from satellite-like images to street-level images.

For each rendered image, we apply SAM [14] to extract
segments at 4 hierarchy levels (see Fig. 3). To obtain VLM
features of each segment, we then crop the image around
each segment and we highlight the segmented area (see
Fig. 4). Highlighting is performed by reducing the opac-
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Figure 2. Illustration of the OpenCity3D pipeline. We first render multi-perspective images from aereal 3D reconstructions, then compute
pixel-wise hierarchical visual-language features. Finally, we project them back to the mesh to enable language queries on the scene.

(a) Smallest (b) Largest

Figure 3. The smallest (3a) and biggest (3b) of four SAM hierar-
chy levels. Smaller segments lead to finer detail on lower levels.

ity of the non-segmented area and marking the border of
the segment with a red line. In experiments (Tab. 2), we
found that this approach improves over existing methods
such as [21] which completely remove the background and
thus ignore relevant background context. Finally, we run
each highlighted segment image through SigLIP [29] to ob-
tain VLM features per mask. We also add the VLM feature
of the entire image as a 5-th hierarchy level.

The resulting pipeline takes about 48h on an NVIDIA
4090 graphic card for a scene with 10k images. Fortunately,
the structure allows the hierarchies to be processed sepa-
rately. We trade off speed against accuracy throughout this
work by at times only processing certain levels.

Figure 4. Example of a highlighted street segment. Methods that
remove the background make the street almost unrecognizable.

Next, to project the 2D features to 3D points, we average
the per-pixel features of all segments in which the relevant
point was observed. This results in a point cloud where
each point has a SigLIP feature attached, which we use for
prompt-based interaction.

3.2. Language-guided Zero-Shot Scene Interaction

Based on this enriched point cloud of a city, we construct
a prompt-based estimator for prediction tasks such as build-
ing age or property value.

Given a text prompt, we use the SigLIP text encoder to
produce the embedding ϕquery. Then we compare it to the
point features ϕl

point to infer point-wise similarity scores.
That is, we follow [13, 21] in considering the maximal co-
sine similarity across the levels between the point and the
prompt embedding, normalized with a set of one or more
negative queries:

simquery, point = max
l∈Levels

exp(ϕT
queryϕ

l
point) (1)

simquery, point =
simquery, point

simquery, point +
∑

n∈Negatives simn, point
(2)

Similarity scores can be visualized as a 3D heatmap of
values between zero and one. We either interpret them as an
indicator (for regression), or a probability (classification).
To evaluate against 2D ground truth map data in Sec. 4 we
project the heatmap to 2D.

3.3. Improved Prediction with Few-Shot Learning

The similarity score only provides relative estimates be-
tween zero and one; when we want to predict actual values
like the building ages in Sec. 4.1.1, we can use VLM fea-
tures as inputs to a model that operates on a point-to-point
basis. To do so, we split the ground truth values into q quan-
tiles and train a classifier. At inference time, we multiply
the predicted class probabilities with the bin centers to ob-
tain continuous values. Experiments indicate that this dis-
cretization improves robustness over direct regression. We
experiment with both K-Nearest Neighbours (KNN) Classi-
fiers and Light Gradient Boosting Machines (LGBMs [11]).
Unless otherwise stated, we use q = 5 with 30% of the data
as training set and report the average of five random draws.
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3.4. GPT-4o Integration

We also propose a GPT-4o-based [16] version of
OpenCity. For each image, we prompt it to provide a score
based on the given query. The result is again fused into
the point cloud (details in supplementary). Note that this
method comes at the cost of significant processing time per
query, as it requires re-processing every image upon change.

4. Experiments
We choose three datasets to evaluate our method. Based

on cadastre records we estimate building footprints and con-
struction years in seven cities in the Netherlands (Sect. 4.1).
In Sec. 4.2 we predict property values, evaluating against
Zillow [2] data in seven cities in North America. Lastly, we
estimate population density, crime rate, and noise pollution
in Buenos Aires (Sect 4.3) based on official records.

4.1. Dataset 1: The Netherlands

We create a dataset of building footprints and associ-
ated construction years using the BAG API [19], which
provides cadastre data for the entire Netherlands. With its
granularity and size, this database represents a unique, high-
quality data collection and thus an interesting opportunity
to evaluate the capabilities of modern VLMs. The resulting
dataset comprises of 19349 annotated buildings.

Along with the cadastre data, we extract corresponding
meshes from Google Earth [1] and process them as de-
scribed above. The result is an ’enriched’ point cloud, in
which each point has five hierarchies of VLM features at-
tached to it. We use the features to infer building footprints
and construction years in a prompt-driven zero-shot setting.

4.1.1 Building Footprints

Using the point cloud and per-point features, we segment
the area into the classes building and background as given
by the BAG cadastre data in a zero-shot setting.

To this end, we query the enriched point cloud with
the positive query ‘building’ and a set of canoni-
cal queries representing common urban objects such as
‘tree’ ‘road’, or ‘car’ (listed in the appendix) as
background classes. The resulting similarity score is com-
puted according to Eq. 2 and interpreted as a probability
score. The scores are then projected onto a 2D plane and in-
terpolated linearly to a regular grid to avoid edge artifacts.
We then assign each point its ground-truth label based on
the presence of a building in the BAG dataset.

We find that this classifier attains a Receiver Operating
Characteristic Area Under the Curve [4] (ROC-AUC) score
between 86.0% and 94.6%, accompanied by accuracies in
the range of 83.2% and 89.8 % given an appropriately cho-
sen threshold. The ROC-AUC score indicates how clearly a

classifier distinguishes positive from negative classes. This
is a significant improvement compared to LangSplat-style
features projected to the same point cloud, which achieve
only 79.8 % accuracy with a ROC-AUC of 86.2 % on the
Rotterdam scene. Furthermore, our method strongly bene-
fits from projecting the features to a 3D point cloud. When
using a flat 2D point grid instead, scores degrade signifi-
cantly (see appendix).

4.1.2 Building Age

Given a point cloud and per-point features, we predict
the same buildings’ construction year in a zero-shot set-
ting. We predict age scores by comparing the positive
prompt ‘modern building’ to the negative ‘old
building’. The ratio (Eq. 2) between the similarity of
the two is our indicator for the building age. Then we again
project the points to two dimensions and re-sample them on
a regular grid. Each point within a building is assigned a
ground truth construction year, all other points are ignored.

The results are displayed in Tab. 1. With Spearman cor-
relations above 50% for both zero-shot approaches in four
out of seven scenes, our model provides a robust first zero-
shot baseline for vision-based building age prediction.

In the few-shot setting, we train an LGBM Classi-
fier [11], which predicts an actual construction year instead
of an indicator. When trained within scenes (Tab. 1), this
consistently results in higher correlations, combined with
robust F1 scores between 0.42 and 0.64. Yet, outliers such
as medieval churches lead to varying Mean Absolute Er-
ror (MAE) scores - particularly in the historic Amsterdam
scene. Similar results of experiments across scenes are dis-
played in the supplementary material.

Fig. 5 further shows how the method is able to distin-
guish entire districts with more modern architecture from
more traditional areas. Modern houses that are built back-
to-back to older houses as seen in Fig. 8 are harder to dif-
ferentiate, as these are often built to match the style of the
existing neighborhood. We furthermore find that OpenCity
outperforms LangSplat-style features, which achieve lower
performance on the task (see Tab. 2).

4.2. Dataset 2: North American Property Prices

We use Zillow [2] to create a dataset of housing prices.
Zillow is a commercial analytics tool for the US real es-
tate market that combines property data from public records
with property listings from various sources. Our dataset
consists of 1260 homes sold between 2020 and 2024 with
corresponding sales prices and locations for seven cities.
Then, we generate the meshes using Google Earth [1] and
process them according to Sec. 3.1 to obtain a point cloud
with associated point features at the coarsest feature level.
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Figure 5. Zero-shot predicted age (left) vs. ground truth construction years (right) in Rotterdam.

Scene Method Building Age Building Segmentation

Correlation F1 Score MAE [y] Max Accuracy ROC-AUC [4] F1 Score

Rotterdam OpenCity (prompt) 0.556 0.317* 35.7* 87.7% 0.927 0.796
OpenCity (LGBM) 0.769 0.639 20.9 84.6% 0.906 0.702
OpenCity (GPT-4o) 0.565 0.566* 34.5* – – –

Amsterdam OpenCity (prompt) 0.507 0.343* 240.22* 85.3% 0.860 0.722
OpenCity (LGBM) 0.577 0.419 97.7 76.5% 0.853 0.642
OpenCity (GPT-4o) 0.293 0.300* 251.22* – – –

The Hague OpenCity (prompt) 0.533 0.321* 151.34* 83.8% 0.925 0.791
OpenCity (LGBM) 0.689 0.457 50.0 86.4% 0.928 0.761
OpenCity (GPT-4o) 0.498 0.313 146.80 – – –

Utrecht OpenCity (prompt) 0.364 0.280* 170.76* 83.2% 0.866 0.752
OpenCity (LGBM) 0.516 0.482 58.3 74.1% 0.813 0.703
OpenCity (GPT-4o) 0.502 0.355* 156.76* – – –

Eindhoven OpenCity (prompt) 0.430 0.270* 27.63* 87.2% 0.931 0.798
OpenCity (LGBM) 0.753 0.501 12.82 87.7% 0.899 0.626
OpenCity (GPT-4o) 0.636 0.380* 21.60* – – –

Groningen OpenCity (prompt) 0.636 0.329* 81.52* 89.8% 0.946 0.813
OpenCity (LGBM) 0.744 0.503 19.28 84.4% 0.901 0.665
OpenCity (GPT-4o) 0.716 0.392* 74.9* – – –

Maastricht OpenCity (prompt) 0.473 0.332* 223.81* 84.5% 0.901 0.760
OpenCity (LGBM) 0.717 0.542 57.3 81.8% 0.889 0.722
OpenCity (GPT-4o) 0.527 0.341* 210.50* – – –

Table 1. Overview of OpenCity results for building age prediction within various cities in the Netherlands. The asterisk (*) indicates scores
estimated by matching the score with the ground truth distribution based on quantiles, which is described in the supplementary material.

4.2.1 Housing Prices

Taking the point cloud with per-point features as input, we
estimate the sales price of the listed homes.

To this end, we construct an indicator analogous to

the previous section, using ‘expensive property’
as positive and ‘cheap property’ as negative prompt.
The result is interpreted as a score for expensiveness, pro-
jected to 2D and linearly interpolated to the known coordi-
nates of the sold properties in the Zillow dataset.
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Feature Type Age Correlation
Building seg.
max accuracy

LangSplat
+ CLIP + prompt 0.394 79.8
+ CLIP + KNN 0.544 80.7
+ SigLIP + prompt 0.186 81.3
+ SigLIP + KNN 0.577 80.9

Highlighting-Based (ours)
+ CLIP + prompt 0.520 76.1
+ CLIP + KNN 0.681 79.1
+ SigLIP + prompt 0.556 87.7
+ SigLIP + KNN 0.728 83.0

Table 2. Comparison of various feature extraction methods
evaluated on the Rotterdam scene. Mask highlighting, done
by OpenCity, outperforms the white-background LangSplat ap-
proach. For LangSplat, the uncompressed, point-projected fea-
tures were evaluated.

The resulting score has correlations between 0.28 and
0.67 with the ground-truth sales prices. Training a LGBM
Classifier across scenes improves upon this (Tab. 3) and
reaches a MAE of 0.25M$, which is significantly better than
chance (0.52M$ MAE).

These results indicate that VLMs understand some of the
mechanics that determine urban property value. Their fea-
tures may be a valuable addition to larger parametric models
such as Zillow’s Zestimate [7].

4.3. Dataset 3: Buenos Aires

We collect official statistics from the Autonomous City
of Buenos Aires (CABA) of population count [3], crime
records [5], and urban noise emissions [6]. Along with
them, we process one larger mesh sourced from Google
Earth [1] following Sec. 3.1 to obtain a point cloud with
point-wise VLM features, using the coarsest feature level.

4.3.1 Population Density

Given the point cloud and features, we use prompts to esti-
mate population density as given by the CABA data.

The population density is given at the granular-
ity of neighborhoods and computed by dividing the
number of residents between 2015 and 2018 by the
area (see Fig. 7 a). We build an indicator using
the positive prompts ‘densely populated area’,
and ‘strongly populated district’. As nega-
tives, we choose ‘loosely populated area’, and
‘unpopulated area’. Once again, we project the
points to two dimensions, resample them to a regular grid,
and assign them the ground truth value taken from the
CABA records.

We find that the indicator yields a Spearman correla-
tion of 0.625. The model correctly identifies the population
cluster in the north-western section (see Fig. 7 a). How-
ever, it erroneously assigns high scores to the city center
south of the train station. With the two additional negatives
‘nature’ and ‘industrial area’, the correlation
is boosted to 0.753.

We also evaluate the features in a few-shot setting, using
28 training and 94 validation neighborhoods to train a KNN
regressor. This results in a similar correlation of 0.61 (see
Tab. 4).

These comparably strong results do not come unexpect-
edly. The population density is in a direct relationship with
the number and size of visible residential buildings.

4.3.2 Crime Rate

Given the same features we predict Buenos Aires crime
rates and validate the result against the CABA records.

CABA provides locations and descriptions of all
recorded crimes between 2016 and 2022 [5]. We remove
any crimes that do not involve a weapon to exclude inci-
dents that are not necessarily tied to a location, such as
tax evasion or fraud. This leaves us with a dataset of 2146
crimes within the scene. To avoid artifacts at region bound-
aries and attenuate sparsity effects, we consider each crime
a 2D Gaussian distribution (σ = 50m), from which we sam-
ple to compute the ground truth expected number of annual
armed crimes per km2 and neighborhood.

As an estimator we invoke Eq. 2, using positive
query ‘dangerous neighborhood’ and the negative
‘safe neighborhood’. The resulting indicator ob-
tains a relatively low Spearman correlation of 0.30. As visu-
alized in Fig. 7 b, the task mainly consists of identifying the
port-facing side of the north-western district as a dangerous
area. The model however assigns high danger scores to the
port as well as the park to the southeast.

We can once again include prior knowledge to increase
the correlation to 0.42. In this case, however, this prior is
less easily justified, as large city parks do not universally in-
duce lower crime rates - though the mere absence of people
may indicate such a tendency.

When evaluated in the aforementioned few-shot setting,
KNN classification on the averaged neighborhood embed-
dings results in an improved correlation of 0.67.

In summary, predicting crime rates presents itself as a
complex task where many influential factors may not be im-
mediately visible. Having reference values, like in the KNN
version, greatly increased the quality of the results. This
finding indicates the need for a more nuanced approach, po-
tentially incorporating a broader range of data types.
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Detroit Miami San Juan Boston San Fran. Seattle Los Angeles Overall

Spearman
OpenCity (prompt) 0.528 0.492 0.348 0.278 0.674 0.419 0.504 0.402
OpenCity (LGBM) 0.506 0.338 0.432 0.433 0.568 0.414 0.728 0.739
OpenCity (GPT-4o) 0.600 0.487 0.260 0.194 0.710 0.366 0.192 0.339

F1 Score
OpenCity (prompt) 0.298 0.278 0.337 0.254 0.381 0.300 0.294 0.308
OpenCity (LGBM) 0.489 0.398 0.340 0.397 0.594 0.485 0.541 0.491
OpenCity (GPT-4o) 0.362 0.318 0.337 0.223 0.413 0.309 0.212 0.309

MAE [M$]
OpenCity (prompt) 0.201 0.354 0.477 0.173 0.179 0.365 0.276 0.360
OpenCity (LGBM) 0.174 0.698 0.389 0.160 0.163 0.349 0.174 0.251
OpenCity (GPT-4o) 0.195 0.364 0.498 0.189 0.171 0.419 0.350 0.373

Table 3. Result overview for housing price prediction across scenes in North America for zero- and few-shot setting. Zero-shot estimates
of F1 and MAE are again computed by quantile-based distribution matching as described in the supplementary material.
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Figure 6. Zero-shot predicted (left) vs. ground truth (right) prices of sold homes in the Detroit scene. Basemaps are from CartoDB [8]

4.3.3 Noise Pollution

We follow the same procedure to estimate urban noise lev-
els, comparing the results to official CABA measurements.

The relevant CABA noise emission dataset [6] pro-
vides a map of estimated average daytime noise in deci-
bels along major city roads (see Fig. 7 c). To build an
estimator, we again prompt the features using Eq. 2 with
‘noisy urban area’ as positive prompt, contrasted
with ‘quiet area’ as a negative. This gives us a weak
Spearman correlation of 0.19.

In the few-shot setting, we train a KNN regressor and
obtain a moderate correlation of 0.71. Similar to the predic-
tion of crime rates, noise level estimations remain difficult
for VLMs, in particular in a zero-shot setting.

5. Limitations
A current limitation of large-scale urban 3D scene under-

standing is the lack of established datasets and test bench-
marks; in this work, we provided a first step towards that

Model Population Density Crime Rate Noise Level

Prompt 0.625 0.422 0.198
KNN 0.609 0.673 0.716
GPT-4o 0.451 0.544 0.286

Table 4. Spearman correlations for predictions population density,
crime rate, and noise levels on the Buenos Aires dataset.

direction by presenting baselines for two sizeable data col-
lections using the BAG building dataset [19] and the Zil-
low housing dataset [2]. Yet our choice of dataset is lim-
ited to locations where public data is available, which can
bias our findings towards more developed places that collect
such data. Further, the scale of large cities remains a tech-
nical limitation of our approach. Unlike existing methods
such as LangSplat [21], we don’t compress the VLM fea-
ture space to three dimensions, which preserves better open-
vocabulary properties at the cost of higher memory con-
sumption. In either case, large cities are processed in rect-
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Figure 7. Zero-shot prediction (top) and ground truth (bottom) on Buenos Aires scenes.

Figure 8. Showcase of the difficulty of determining the age of
houses in the Rotterdam mesh. The buildings were built back-to-
back; the left one in 1907 and the right one in 1997.

angular chunks, which can lead to artifacts at the borders of
neighboring chunks if the overlap is insufficient. Another
technical limitation is that images rendered from relatively
low-quality meshes (such as ours) may be less well under-
stood by VLMs. To avoid biases, we recommend only com-
paring predictions of meshes of the same quality and origin.
Furthermore, the underlying imagery is in some cases more
recent than the ground-truth data (see supplementary ma-

terial). Further, OpenCity can manifest social and cultural
biases inherited from the visual language models. Those bi-
ases stem from the under- or over-representation of certain
demographic groups in the training datasets. In particular,
for tasks like crime rate prediction (Sec. 4.3.2), our method
can perpetrate and reinforce stereotypes and systemic dis-
crimination with the limited availability of diverse test data
as revealed by Pouget et al. [20]. Mechanisms such as those
proposed by [25] may help to mitigate these effects.

6. Conclusion

In this work, we investigated foundation models, in par-
ticular large visual-language models, and their understand-
ing of urban properties. With our method OpenCity, we
explore the capabilities of VLMs at city scale, focusing
on inferring higher-level characteristics such as population
density, building age, property value, crime rate, and noise
levels. Our findings suggest that VLMs exhibit significant
potential in urban scene analysis. Although predictions for
crime rates and noise levels remain less robust and may con-
tain substantial bias, our experiments on population density,
building age, and property value demonstrate considerable

8



promise for advancing urban research. Overall, our experi-
ments raise hopes that VLMs can contribute significantly to
city-scale urban scene understanding, and we hope that our
work encourages further research into this direction.
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Figure 9. Confusion matrix of property price classification with
LGBM [11] across scenes.

A. Additional Results

A.1. Evaluation Across and Within Scenes

In the main paper, we presented results for building age
prediction within cities and property price estimation across
scenes. The complementary results for building age across
cities and property price within scenes are presented in Ta-
bles 1 and 6, featuring additional metrics. Furthermore,
confusion matrices are visualized in Figures 9 and 10.

A.2. Evaluation with more Training Data

We find that the results across scenes can be significantly
boosted when training with more than 30% of the dataset.
Figures 11 and 12 visualize this effect.

A.3. Ablation: 3D Point Cloud vs. Flat Grid

Although only evaluating on a 2D grid we find that the
usage of a 3D point cloud is beneficial for feature fusing.
In table 7 we demonstrate that performance degrades sig-
nificantly if projecting to a flat 2D point grid instead. We
believe that this is caused by the imprecise attribution of
points to masks.

B. Implementation Details

B.1. Dataset Creation

We sample positions based on a 2D grid, adding random
offsets on all axes. The angle to the z-xis is sampled be-
tween 0 and 90 degrees to avoid sky-facing perspectives.
The other angles are sampled uniformly at random. RGB-D
images with depth closer than 50m and images with infinite
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Figure 10. Confusion matrix of building age classification with
LGBM [11] across scenes.

depth in more than 20% of the pixels are discarded. See
Table 9 for details on the scenes.

B.2. Projection to Point Cloud

The point cloud is first downsampled to 1M points (0.5M
if only the coarsest level was processed) to reduce memory
consumption. Following OpenMask3D [27], point visibility
is determined based on depth.

However, we filter the masks before projection. As most
segments only cover a handful of pixels, we retain only
those that cover at least 0.25% of the image. This leads
to the removal of roughly 60% of all segments and speeds
up the overall processing time by 40%.

B.3. Prompting the Point Embeddings

As mentioned in the main paper, we prompt the model
with positive and negative queries. We find that the choice
of negatives can have a strong impact on performance.
For building segmentation, the full set of negatives was:
‘tree’, ‘road’, ‘park’, ‘river’, ‘car’, ‘sea
/ lake / canal’, ‘parking lot’, ‘urban
scene’, and ‘city’.

B.4. Estimation

We use scikit-learn [17] to build unweighted KNN re-
gressors and classifiers (k = 5). Each point and feature
level provides a data point. As for LightGBM [11], we use
the official package with default settings. We find that clas-
sifiers on building age, crime rate, noise levels, and popula-
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Overall Amsterdam- The Hague- Eindhoven- Groningen- Maastricht- Rotterdam- Utrecht-
F1 Score

lgbm 0.67 0.54 0.47 0.81 0.75 0.60 0.76 0.59
linear 0.61 0.52 0.38 0.76 0.66 0.56 0.55 0.53
knn 0.61 0.51 0.43 0.78 0.70 0.54 0.70 0.49
dummy 0.20 0.23 0.21 0.28 0.24 0.21 0.23 0.21

Spearman Correlation

lgbm 0.73 0.32 0.56 0.40 0.84 0.65 0.76 0.68
linear 0.67 0.29 0.46 0.32 0.70 0.61 0.57 0.60
knn 0.67 0.25 0.46 0.33 0.77 0.56 0.67 0.52
dummy 0.00 -0.01 0.01 -0.02 0.03 -0.00 -0.01 0.01

MAE [y]

lgbm 50.85 122.23 57.99 12.64 18.26 63.50 15.65 60.62
linear 62.84 137.46 88.79 13.09 25.09 82.48 22.31 68.57
knn 55.62 125.30 62.59 14.46 24.12 67.76 18.67 72.12
dummy 102.95 166.55 93.28 77.03 88.49 106.14 75.75 109.80

MAPE [%]

lgbm 3.03 8.28 3.11 0.64 0.94 3.43 0.81 3.72
linear 3.63 8.94 4.71 0.66 1.29 4.40 1.15 4.10
knn 3.30 8.53 3.36 0.73 1.23 3.67 0.96 4.31
dummy 5.85 11.10 5.03 3.94 4.51 5.82 3.93 6.33

Table 5. OpenCity few-shot results for construction year prediction trained across various cities in the Netherlands.
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Figure 11. Property price estimation results against dataset size for experiment across scenes. Zero-shot MAE baselines were obtained
from scores by matching quantiles.

tion density benefit strongly from reducing noise by averag-
ing the embeddings of the relevant area before training and
inference.

B.5. Projection of Scores to Ground Truth Scale

We experiment with methods to convert the scores into
estimates matching the scale of the ground truth distribu-
tion. To that end, we compute the q quantiles of the pre-
dicted and the ground truth distribution. Then we assign a

prediction in the i-th quantile of the score distribution the
mean of the values in the i-th quantile of the true distribu-
tion. We implement this strategy with q = 5

B.6. GPT-4o Integration

We use GPT-4o to produce one score per prompt and im-
age. The obtained score is then fused into the point cloud
analogously to the embeddings. Due to cost and time con-
straints, we only process full images (coarsest level) and
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Mean Detroit Miami San Juan Boston San Fran. Seattle Los Angeles
F1 Score

lgbm 0.34 0.33 0.25 0.38 0.34 0.34 0.33 0.40
linear 0.28 0.30 0.19 0.33 0.29 0.24 0.22 0.38
knn 0.32 0.34 0.19 0.36 0.31 0.35 0.26 0.45
dummy 0.20 0.20 0.20 0.19 0.22 0.21 0.17 0.18

Spearman Correlation

lgbm 0.49 0.55 0.24 0.45 0.49 0.57 0.39 0.75
linear 0.51 0.55 0.30 0.38 0.44 0.68 0.43 0.79
knn 0.51 0.59 0.29 0.39 0.41 0.63 0.46 0.77
dummy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MAE [M$]

lgbm 0.34 0.19 1.03 0.39 0.14 0.17 0.32 0.14
linear 0.37 0.21 1.10 0.45 0.16 0.16 0.35 0.13
knn 0.32 0.17 0.97 0.37 0.14 0.14 0.30 0.11
dummy 0.52 0.28 1.29 0.55 0.20 0.39 0.51 0.39

RMSE [M$]

lgbm 0.58 0.28 2.20 0.56 0.17 0.24 0.42 0.19
linear 0.60 0.31 2.23 0.64 0.21 0.22 0.44 0.17
knn 0.55 0.26 2.15 0.54 0.17 0.19 0.39 0.15
dummy 0.80 0.38 2.60 0.74 0.25 0.48 0.64 0.50

Table 6. OpenCity few-shot results for property price prediction trained within various cities in the US. This experiment was conducted
using 50% of the samples as training data. The small training set size (down 30 samples) can otherwise lead to overfitting.
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Figure 12. Building age estimation results against dataset size for experiment across scenes. Note how quantile matching fails to produce
meaningful zero-shot baselines, producing MAE significantly worse than chance.

no individual masks. Table 8 shows the used prompts for
the GPT experiments (GPT4o). For the property price and
building age experiments, the rating has been grounded by
providing reference values for ratings 3, 6, and 9. These ref-
erence values are obtained by binning the ground truth data
into 10 bins. Despite this grounding, the resulting scores
only match the ground truth distribution to a limited ex-
tent. We therefore evaluate them analogously to the simi-

larity scores. The induced prompting cost scales with the
number and quality of images as well as the length of the
response. Our experiments with 7k to 10k images per scene
cost 10-20$ per query. At the time of creation (September
2024), the inference time was roughly at 4-8h per scene.
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Geometry Type ROC-AUC [4] F1 Score

3D Point Cloud
+ prompt 0.946 0.813
+ KNN 0.828 0.625

Flat Geometry
+ prompt 0.904 0.724
+ KNN 0.789 0.591

Table 7. Comparison of building segmentation performance in
Groningen with a 3D point cloud vs. using a flat point grid.

B.7. Evaluation

Unless stated otherwise, the 3D point cloud is projected
to 2D and then interpolated linearly to a regular grid. Corre-
lation is computed on the points (not the districts/buildings).
The validation set of the KNN estimators is uniformly ran-
domly downsampled to 20k points per scene to reduce in-
ference time. Preliminary experiments showed that this has
no significant effect on the results.

C. Experiment: OpenMask3D for Urban Point
Clouds

One of the key characteristics of OpenMask3D [27] is
that it segments the input point cloud and then stores one
feature per 3D segment. This greatly boosts storage and
memory efficiency, making it well-suited for city-scale in-
put.

Unfortunately, Mask3D [24], the 3D segmentation
model used by OpenMask3D, failed to generate meaningful
segments for our 3D city scenes. Neither OpenMask3D’s
Scannet200 [23] and STPLS3D [9] checkpoints, nor the
more recent Segment3D [10] - a model claimed to have su-
perior generalization performances compared to Mask3D -
remedied the situation (see Fig. 13).

In particular, we find that the models display high sensi-
tivity to the density and scale of the point clouds.

D. Additional Visualizations
We provide qualitative results for open-set segmentation

in Fig. 14. Figures 15 and 16 visualize the complete re-
sults for property price prediction, whereas figures 17 and
18 display the ones for building age prediction.

Figure 13. An example segmentation of a city area using Seg-
ment3D
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Experiment Prompt
Noise Levels,
Population Density and
Dangerous Neighborhoods

Estimate the noise level, population density and how dan-
gerous the neighborhood might be of the area shown in
this image from 0 to 10.
return the result without explanation

Property Prices Estimate the average property value of the area in the US
from a scale from 0 to 10:
3 meaning around 250k$
6 meaning around 600k$
9 meaning around 1.5m$
return the result without explanation

Building Age Estimate the average building age of the area from a scale
from 0 to 10:
3 meaning around 1739
6 meaning around 1883
9 meaning around 1987
return the result without explanation

Table 8. GPT4-o experiments and their corresponding prompts.

Scene Area (km2) Latitude Bounds Longitude Bounds Sampling Year Rendered Images

Buenos Aires (Argentina) 5.20 [-58.3801, -58.3593] [-34.6041, -34.5803] 2021 - 2023 14261
Rotterdam (Netherlands) 1.68 [51.9088, 51.9194] [4.4542, 4.4741] 2019 - 2023 5704
Amsterdam (Netherlands) 1.99 [52.3698, 52.3809] [4.8937, 4.9174] 2021 - 2023 6597
The Hague (Netherlands) 1.70 [52.0782, 52.0887] [4.3073, 4.3285] 2020 - 2023 6520

Utrecht (Netherlands) 1.78 [52.0818, 52.0929] [5.0987, 5.1197] 2017 - 2019 6527
Eindhoven (Netherlands) 1.35 [5.42727, 5.44250] [51.43233, 51.44241] 2015 - 2023 8946
Groningen (Netherlands) 1.10 [6.57495, 6.59036] [53.21107, 53.21964] 2024 7310
Maastricht (Netherlands) 2.20 [5.68648, 5.70744] [50.8425, 50.8525] 2011 - 2023 12390
San Juan (Puerto Rico) 3.45 [-66.0883, -66.0707] [18.4475, 18.4642] 2016 9369

Detroit (USA) 4.12 [-83.0038, -82.9789] [42.3467, 42.3648] 2019 - 2023 9649
Miami Beach (USA) 3.18 [-80.1444, -80.1272] [25.7664, 25.7831] 2018 - 2022 9377

Seattle (USA) 2.10 [-122.39508, -122.36096] [47.49694, 47.51248] 2018 - 2023 12834
Boston (USA) 3.83 [-70.99674, -70.96593] [42.36831, 42.39076] 2018 - 2021 14800

San Francisco (USA) 1.98 [-122.16672, -122.15059] [37.67978, 37.69241] 2022 - 2023 9822
Los Angeles 2.67 [-117.71718, -117.69846] [33.61083, 33.62591] 2017 - 2024 7610

Table 9. Scene information. Sampling year indicates the time underlying footage for the reconstruction was taken according to Google
Earth [1].
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(a) Rendered mesh (b) Prompt ”building”

(c) Prompt ”road” (d) Prompt ”water”

(e) Prompt ”tree” (f) Prompt ”train tracks”

Figure 14. Qualitative results for open-set segmentation in Amsterdam. We can see that buildings 14b, trees 14e and train tracks 14f are
recognized with high precision, but the model has difficulties for water 14d and roads 14c
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Figure 15. Visualization of zero-shot property price predictions (left) vs ground truth (right) by OpenCity. Basemaps are from CartoDB [8].
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Figure 16. Visualization of zero-shot property price predictions (left) vs ground truth (right) by OpenCity. Basemaps are from CartoDB [8].
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Figure 17. Visualization of zero-shot building age predictions (left) vs ground truth (right) by OpenCity. Basemaps are from CartoDB [8].
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Figure 18. Visualization of zero-shot building age predictions (left) vs ground truth (right) by OpenCity. Basemaps are from CartoDB [8].
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